
Using Cross-Layer Adaptations for Dynamic Data
Management in Large Scale Coupled Scientific Workflows

Tong Jin, Fan Zhang,
Qian Sun, Hoang Bui,

Manish Parashar
NSF Cloud and Autonomic

Computing Cente
Rutgers Discovery Informatics

Institute
Rutgers University,

Piscataway, NJ 08854, USA
{tjin, zhangfan, qiansun,

hbui,
parashar}@cac.rutgers.edu

Hongfeng Yu
Computer Science and

Engineering
University of

Nebraska-Lincoln, Lincoln, NE
68588, USA

yu@cse.unl.edu

Scott Klasky,
Norbert Podhorszki,

Hasan Abbasi
Oak Ridge National Labortory

P.O. Box 2008, Oak Ridge,
TN, 37831, USA

{klasky,pnorbert,habbasi}@ornl.gov

ABSTRACT
As system scales and application complexity grow, manag-
ing and processing simulation data has become a signif-
icant challenge. While recent approaches based on data
staging and in-situ/in-transit data processing are promis-
ing, dynamic data volumes and distributions,such as those
occurring in AMR-based simulations, make the efficient use
of these techniques challenging. In this paper we propose
cross-layer adaptations that address these challenges and
respond at runtime to dynamic data management require-
ments. Specifically we explore (1) adaptations of the spatial
resolution at which the data is processed, (2) dynamic place-
ment and scheduling of data processing kernels, and (3) dy-
namic allocation of in-transit resources. We also exploit co-
ordinated approaches that dynamically combine these adap-
tations at the different layers. We evaluate the performance
of our adaptive cross-layer management approach on the In-
trepid IBM-BlueGene/P and Titan Cray-XK7 systems us-
ing Chombo-based AMR applications, and demonstrate its
effectiveness in improving overall time-to-solution and in-
creasing resource efficiency.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
C.2.4 [Computer - Communication Networks]: Dis-
tributed Systems; D.2.8 [Software Engineering]: Met-
rics—performance measures

Keywords
Cross-layer adaptation, in-situ/in-transit, coupled simula-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SC ’13, November 17 - 21, 2013, Denver, CO, USA
Copyright 2013 ACM 978-1-4503-2378-9/13/11 ...$15.00.
http://dx.doi.org/10.1145/2503210.2503301

tion workflows, staging, data management

1. INTRODUCTION
Advanced coupled simulation workflows running at ex-

treme scales are providing new capabilities and new oppor-
tunities for insights in a wide range of application areas.

These workflows compose multiple physical models and
codes along with data processing and analysis services, and
are presenting new challenges due to their scales, coupling
and coordination behaviors and overall complexities, which
must be addressed before their potential can be fully real-
ized. For example, many of these simulations are based on
dynamically adaptive formulations such as Adaptive Mesh
Refinement (AMR), which exhibit dynamic runtime behav-
iors and result in large and dynamically changing volumes
of data. Efficiently managing, transporting and analyzing
this data has become a significant and immediate challenge.

Recent approaches based on data staging [5, 6, 16] and in-
situ/in-transit data processing [25, 3] that are attempting to
address these challenges are promising – these approaches
offload data processing to separate resources on the same
systems (in-transit) and/or perform the processing directly
on the resources that are running the simulation (in-situ).
For example, our previous work [3] demonstrated how a sim-
ulation plus analytic workflow can efficiently execute on a
high-end computing system using a hybrid in-situ/in-transit
approach. Specifically, we proposed to decompose the an-
alytic components of the workflow into pieces that can run
scalably in-situ, and pieces that run in-transit – e.g., the
raw data is down-sampled in-situ using a predefined sam-
pling rate and is then transported to the in-transit for fur-
ther analysis. The effectiveness of this approach clearly de-
pends on the mapping of workflow components, the size and
distribution of the data and the resources available in-situ
and in-transit, and achieving efficiency and scalability re-
quires carefully configuring the staging resources mapping
based on application behaviors. While these can be pre-
configured for relatively simple and static workflows, such
an approach becomes ineffective when application behaviors
become dynamic, as is the case for AMR-based simulations

– in AMR-based simulations, dynamic refinements can lead
to imbalanced data distributions and heterogeneous resource
(memory, CPU, network bandwidth) requirements.

In this paper we explore cross-layer adaptive runtime ap-
proaches to address these challenges. Specifically, we ex-
plore runtime adaptations at three different layers - applica-
tion layer, middleware layer, and resource layer. We evalu-
ate their ability to respond to the dynamic data processing
requirements and resource constraints in a coupled AMR-
based simulation workflows. At the application layer, we
can dynamically adapt the spatial and temporal resolution
of the data being written and processed; at the middle-
ware layer, we can adapt the in-situ/in-transit placement
and the scheduling of data processing operations; and at
the resources layer we can adapt the allocation of in-transit
resources. We then explore a coordinated approach that
combines these adaptations in a cross-layer manner to opti-
mize the end-to-end performance of the workflow.

We have implemented the adaptive cross-layer manage-
ment approach on the Intrepid IBM BlueGene/P system at
Argonne National Laboratory and the Titan Cray-XK7 sys-
tem at Oak Ridge National Laboratory. We use these sys-
tems with a Chombo [1]-based AMR simulation plus data
visualization workflow to experimentally evaluate the be-
havior of the individual adaption at each layer, as well as
the effectiveness of the dynamic and coordinated cross-layer
approach in improving overall time-to-solution, increasing
resource efficiency, and mitigating I/O costs.

The rest of this paper is organized as follows. Section 2
presents the data management challenges in advanced cou-
pled simulation workflows and highlights the challenges of
the Chombo [1]-based AMR simulation plus data visualiza-
tion workflow. Section 3 describes the conceptual architec-
ture and operation of the adaptive cross-layer management
approach and its components. Section 4 develops specific
adaptation policies. Section 5 presents the results of our
experiments using the Chombo-based application workflow
on Intrepid and Titan. Section 6 discusses related work.
Section 7 concludes the paper and outlines future work.

2. PROBLEM DESCRIPTION
As noted above, dynamically adaptive simulation formu-

lations such as those based on Adaptive Mesh Refinement
(AMR), exhibit dynamic runtime behaviors and result in
large and dynamically changing volumes of data, imbal-
anced data distributions and heterogeneous resource (mem-
ory, CPU, network bandwidth) requirements. Figure 1 shows
peak memory consumption for an AMR-base simulation us-
ing Chombo library. Although memory consumption in-
creases for each time step, the pace in which the memory
consumption increases is erratic. Moreover, the memory us-
age is not distributed evenly among these processes. These
characteristics increase the complexity of managing staging
resources and scheduling in-situ/in-transit data processing
while satisfying constraints on the amount of data move-
ment, the overhead on the simulation, or/and the level of
analytics.

For example, AMR-based simulations involve dynamic lo-
cal refinements which can significantly increase the resources
consumed by the simulation on a subset of nodes. This in
turn reduces the available resources for in-situ analytics. At
the same time, it also increases the spacial-temporal res-
olutions of data and the computational/data requirements

Figure 1: Distribution of peak memory consumption
for an AMR-based Polytropic Gas simulation using
the Chombo library.

for the analytics, as well as the cost of data movement if
the analytics have to be executed in-transit. The increasing
computational/data requirements of the analytics can also
impact in-transit resource requirements. Note that as the
simulations evolves, refined regions maybe further refined or
coarsened.

To further illustrate the dynamic data management and
processing requirements of AMR-based simulations, consider
the 3-D AMR Polytropic Gas application that is part of
the Chombo package [1] developed by Lawrence the Berke-
ley National Laboratory. This application implements the
Godunov unsplit algorithm for integrating systems of con-
servation laws (e.g., the Euler equations of gas dynamics).
Figure 1 plots parts of a profile of the distribution of the
application’s peak memory usage on 4K CPU cores over 50
time steps. As we can see from this plot, memory usage
varies significantly, both across cores and over time. More
importantly, the peak memory usage can be as high as sev-
eral Gigabytes per node if multiple memory hungry process
are placed in the same multi-cores node.

Clearly, making staging and in-situ/in-transit processing
approaches effective for these dynamic applications given
performance, overhead and resource constraints requires run-
time trade-offs and adaptations at different levels. Adapta-
tions may be explored at different levels. At the applica-
tion level, the application may be able to adapt the spatial
and/or temporal resolution of the analytics or limit the ana-
lytics to ”interesting” regions, to meet the constraints on the
type of analytics, the available resources and/or acceptable
overheads. Similarly, at the runtime level, the placement
and scheduling of in-situ/in-transit tasks can be adapted
and at the resource level, the number of in-transit resources
can be adapted. In this paper we explore how we can realize
these dynamic adaptations at runtime for AMR-based sim-
ulation workflows on large-scale systems. We also explore
policies and mechanisms for combining these adaptations in
a coordinated and cross-layer manner to better address ap-
plication requirements and constraints.

Figure 2: A conceptual architecture for realiz-
ing runtime adaptations for in-situ/in-transit imple-
mentations of coupled simulation workflows.

3. REALIZING CROSS-LAYER ADAPTAT-
IONS FOR LARGE-SCALE SIMULATI-
ON WORKFLOWS

This section describes our approach for efficiently and
scalably realizing runtime adaptations for in-situ/in-transit
implementations of coupled simulation workflows. The con-
ceptual architecture follows an autonomic approach and con-
sists of three key components, a monitor, the adaptation en-
gine and adaptation policies, as illustrated in Figure 2 and
described below. In our approach, users can provide two
types of inputs. User preferences define the objectives that
users expect to achieve, such as minimizing time-to-solution,
minimizing data movement, using highest available data res-
olution, etc. User hints provide additional information to
adaptation the engine based on the user’s knowledge of the
application workflow and on past experience, for example,
toleration to data downsampling, nature of regions of inter-
est, possible adaptation phases and/or patterns, etc.

The Monitor captures runtime status information at the
different layers (application, middleware, and resource) and
uses it to characterize the current operational state of the
system and application, and trigger adaptations if appropri-
ate. Status information includes resource utilization and re-
source availability (memory, bandwidth, CPU cores) as well
as application execution time, analysis time and the size of
the generated data. The Adaptation Engine is responsible
for selecting and executing appropriate adaptations based
on user preference and hints, operational state provided by
the monitor, and the adaptation policies.

Three adaptation mechanisms are currently defined. In
the first mechanism, the application layer changes the spatial
and/or temporal resolution of data generated in-situ before
its is moved to the in-transit resources for processing. This
mechanism can adjust the frequency of in-situ data reduc-
tion as well as the type of reduction performed by appropri-
ately selecting the parameters of the data reduction module
(e.g., down-sample factor, compression rate, etc.). The sec-
ond adaptive mechanism adapts the placement of the data
processing operation at middleware layer. Placements can
be in-situ, in-transit or hybrid (in-situ + in-transit). The
third adaptation mechanism targets the resource layer, de-
termines the number of in-transit resources and dynamically
allocates resource for in-transit processing if required.

The Adaptation Policies specify which adaptation mech-
anism(s) should be executed based on user inputs and the
operational state. In the following Section, we develop adap-

Figure 3: An overview of the adaption process.

tation policies at each of the layers as well as a policy for
combined cross-layer adaptation.

The adaption process is illustrated in Figure 3. The op-
erational status of the simulation workflow is periodically
(e.g., after every specified number of simulation time steps)
sampled by theMonitor and forwarded to the Adaptation
Engine, which determines if an adaptation is required and
triggers the appropriate adaptation(s).

4. DEFINING ADAPTATION POLICIES
In this section, we develop adaptation policies for an AMR-

based simulation workflow. Note that rather than find opti-
mal adaptations, our goal is to develop policies that can be
efficiently and scalably implemented at runtime on very large
scale system. Specifically, we develop policies for each of the
3 layers as well as a cross-layer policy of coordinated adap-
tations, which are described in the following subsections.
Table 1 summarizes the notation used in this discussion.

4.1 Policy for Adaptation at the Application
Layer

The application layer adaptive mechanism controls the
resolution of the data that is forwarded to the analysis meth-
ods, and enables a trade-off between the time and resources
spent on analysis and the resolution at which the analysis
is performed. For example, it may be beneficial to have
some analysis done even if it is performed at a lower res-
olution. The goal of this adaptation is to determine the
data resolution that can be effectively processed in-situ or
transferred to in-transit resources given the user preferences
and current operational state. Specifically, it determines
the factor(X) by which to downsample the simulation data.
This is selected from a set of acceptable downsampling fac-
tors provided by the user as a hint, or generated automat-
ically based on information content of interest. The selec-

Sdata size of simulation output (1)(8)(10)
X down-sampling factor (1)(3)

fdata reduce(Sdata, X) data reduction operation (2)
Memdata reduce(Sdata, X) memory needed to perform data reduction (2)

Memavailable total available memory (2)
Tsum insitu total wallclock time on in-situ resources (4)(6)
Tsum intransit total wallclock time on in-transit resources (5)(6)

N number of simulation processors (4)
M number of in-transit processors (5)

ITER total number of iterations (4)
Di final decision on performing analysis code: 1 for in-situ, 0 for in-transit (4)(5)(7)(8)

Ti sim(N) execution time of the ith iteration of the simulation (4)(9)
Ti insitu(N,Si data) execution time for the ith in-situ analysis on N processors (4)(7)

Ti intransit(M,Si data) execution time for the ith in-transit analysis on M processors (5)(9)
Ti intransit wait idle time on the in-transit side (5)
Ti insitu wait idle time on the in-situ side (4)

Tj intransit remaining(M,Sj data) remaining execution time for the jth iteration in-transit processing (7)
Meminsitu(Si data, N) memory cost for in-situ processing (8)

Memintransit(Si data,M) memory cost for in-transit processing (8)(10)
Ti sd(Sdata) the latency for sending data (9)
Ti recv(Sdata) the latency for receiving data (9)

Table 1: Notation used in defining adaptation policies and formulation index.

tion is made based on the available memory and the memory
need to implement downsampling factor X, and the smallest
value of X that can be used given the memory constrains.
The downsampling factor for the ith simulation iteration is
determined by the following policy:

Maximize

Sdata − fdata reduce(Sdata, X) (1)

Subject to

Memdata reduce(Sdata, X) 6Memavailable (2)

(memory requirement)

whenXε{X1, X2, · · · , Xn} (3)

(set of acceptable down-sample factors)

4.2 Policy for Adaptation at the Middleware
Layer

Adaptations for middleware layer target target the place-
ment of the analytics either in-situ or in-transit to minimize
the overall time-to-solution under the current resource con-
straint. The policy is triggered in three cases: (1) If there
are sufficient memory resources to perform the analysis ei-
ther in-transit or in-situ, the adaptation will place the anal-
ysis at the location where memory resources are available.
(2) If there are sufficient memory resources at both locations
and in-transit CPU resources are available, the analysis will
be placed in-transit since the analysis can run in parallel
with simulation. (3) If the in-transit cores are busy pro-
cessing simulation data generated at previous time steps,
the adaptation will simply estimate the remaining time for
such in-transit data processing, as well as the possible ex-
ecution time if performing in-situ processing. If the in-situ
data processing is estimated to be faster, the analysis will be
determined to perform in-situ directly. Otherwise, the data
will be asynchronously transferred to staging nodes immedi-
ately, and get processed as soon as in-transit cores become

Figure 4: Demonstration of analysis placement
adaptation policy. For adaptation at ts=1 and 2,
in-transit processors are idle, so analysis is placed
in-transit. For adaptations at ts=30, in-transit pro-
cessors are busy, the analysis time of in-situ and
in-transit are estimated, and the analysis is placed
in-situ for shorter estimated processing time. Since
data transfer is asynchronous, the time send/receive
data is much smaller than the time to process data.

available. These last two cases are demonstrated in Figure 4
and can be expressed in the following formulations:

Since
Tsum insitu '

∑ITER
i=1 {Ti sim(N)+Di·(Ti insitu(N,Si data))

+D̄i · (Ti insitu wait)} (4)

Tsum intransit '
∑ITER
i=1 {D̄i · Ti intransit(M,Si data)

+Ti intransit wait} (5)

Minimize

max{Tsum insitu, Tsum intransit} (6)

(minimized time-to-solution)
Subject to
D̄i·(Tj intransit remaining(M,Sj data) < Ti insitu(N,Si data))

= 1, j < i; (7)

(execution time estimation)
Di·(Memintransit(Si data,M) < Sdata)+D̄i·(Memavailable

6Meminsitu(Si data, N)) = 1 (8)

(resource constraints).

4.3 Policy for Adaptation at the Resource Layer
Performing analysis in-transit minimally impacts the sci-

entific simulation and achieves better time-to-solution. How-
ever, this approach sacrifices the computational resource to
achieve the performance enhancement on overall time-to-
solution because in-transit resource is often over-allocated
in case of memory/CPU unavailability.

The resource layer adaptation is targeting this trade-off
between maximized time-to-solution over minimized staging
resources. While performing in-transit processing, the ideal
time-to-solution can be achieved if in-transit analysis on sim-
ulation data generated at the ith time step finishes before
the raw data of the (i+ 1)th simulation is ready to send. In
other words, the less idle time the in-transit cores have, the
more efficient the in-transit resources are utilized. On the
other hand, enough in-transit resource are needed to cache
the simulation data generated at current time step. There-
fore, the adaptation initially determines the minimal number
of in-transit cores accordingly based on the size of produced
simulation data and required in-transit memory resource.
And then, if the in-transit processing is estimated to cost
more time than the simulation, more in-transit cores will
be assigned adaptively to satisfy the ideal time-to-solution.
This resource constraints and heuristic adaptive policy can
be formulated using the following expressions.

Minimize M
Subject to
Ti+1 sim(N) + Ti+1 sd(Si+1 data) = Ti intransit(M,Sdata)

+Ti recv(Si data) (9)

(Expected same execution time on both simulation side and
in-transit side)

and

Memintransit > Sdata (10)

(in-transit memory constraint)

4.4 Policy for Combined Cross-Layer Adap-
tation

Given the adaptive mechanisms at all three layers, it is im-
portant to coordinate them appropriately to better achieve
the cross-layer adaptation according to user-defined objec-
tives. Better performance would be achieved if the combina-
tion of adaptations could contribute to the user defined ob-
jective, which could be minimizing time-to-solution or mini-
mizing data movement. To utilize the potential of such com-
bined cross-layer adaptation and evaluate its effectiveness,
we propose and design a heuristic root-leaf policy for the se-
lection of adaptation mechanisms at three layers mentioned
in the previous sections.

There are three steps of performing this combined adap-
tation policy: looking up root mechanisms, looking up leaf

mechanisms, and executing mechanisms. Let us take mini-
mizing time-to-solution as an example objective to illustrate
these steps of our policy. Firstly, the policy selects the mech-
anisms with the same objective as that of the cross-layer
adaptation, and marks them as root mechanisms. Based
on the descriptions of adaptation mechanisms at three lay-
ers, we can tell that the middleware adaptation should be
included automatically since it has the same objective as
that of combined cross-layer adaptation - minimal time-
to-solution. Secondly, it goes through the formulation of
root mechanisms and looks for their data dependencies with
other layers’ mechanisms. In this example, the data size
Si data and the number of in-transit cores M are two signif-
icant input factors in root mechanism – middleware adap-
tation mechanism, and are also impacted by the application
layer adaptation for data reduction and resource layer adap-
tation. Therefore, the mechanisms on these two layers are
marked as leaf mechanisms. Finally, after both root mecha-
nisms and leaf mechanisms are marked, the policy executes
these adaptations from leaf mechanisms to root mechanisms.
If there are data dependencies among leaf mechanisms, the
execution will start from leaf mechanisms that don’t reply
on others’ outputs, and then their dependents. Here, the
application layer adaptation will be executed first since its
output Si data will impact the other leaf mechanism – re-
source layer adaptation. And then, middleware adaptation
will be performed at last as the root mechanism.

Similarly, if the user-defined objective is to maximize in-
transit resource utilization, the policy will mark resource
layer adaptation as root mechanism and the application layer
adaptation as leaf mechanism. But the middleware adapta-
tion will not be included since it has no data dependency
with the root mechanism.

5. EXPERIMENTAL EVALUATION
In this section we present experimental evaluation of the

adaptive runtime management approach presented in this
paper. We first evaluate adaptations at each of the three
levels individually, and then evaluate the combined cross-
layer adaptations.

5.1 Experiment Setup

AMR-based Simulation Workflow:.
The evaluation presented in this section uses a simula-

tion workflow that is composed of Chombo [1]-based AMR
simulation and a visualization service, which are described
below.

Chombo-based AMR Simulations: We use two dif-
ferent AMR-based simulations that are distributed as part
of the Chombo AMR package [1]. Both the simulations im-
plement the AMR Godunov unsplit algorithm but show very
different performance characteristics. The AMR Advection-
Diffusion simulation implements an adaptive conservative
transport (advection-diffusion) solver, while the AMR Poly-
tropic Gas implements the AMR Godunov unsplit algorithm
for integrating systems of conservation laws (e.g., the Euler
equations of gas dynamics). While both simulations exhibit
runtime adaptations, the latter is more memory and com-
pute intensive especially in 3-D.

Visualization Service: The visualization service imple-
ments the marching cubes algorithm [13, 21], the de facto
standard isosurface extraction algorithm in scientific visu-

alization, to construct triangular meshes from AMR data
according to user specified isovalues. The algorithm scans
each cell and conducts triangulation depending only on the
values of the current cell, and thus the isosurface construc-
tion is performed locally. The ghost regions are managed
by Chombo, and there is nearly no communication needed
for the marching cubes algorithm. We can extract isosur-
faces from full-resolution data in-situ, which can generate a
high-quality triangular mesh to capture the fine structural
information.

Implementation of the Adaptation Runtime:.
The adaptive runtime is implemented on the top of our

DataSpaces data-management substrate [3]. DataSpaces pro-
vides distributed interaction and coordination services to
support in-situ and in-transit simulation-analysis workflows,
and its data transport layer provides the required asyn-
chronous communication and data transfer services.The Adap-
tation Engine is integrated into DataSpace to enable runtime
workflow coordination and adaptation at different layers. In
addition, the embedded performance tools in Chombo pro-
vides runtime system information such as memory usage and
execution time, and are used by the Monitor.

Systems:.
Our experiments were conducted on the Intrepid IBM

BlueGene/P system at Argonne National Laboratory and
Titan Cray-XK7 systems at Oak Ridge National Laboratory.
Intrepid consists of totally 40960 nodes, each of which has
850 MHz quad-core processor and 2GB RAM (i.e., 500MB
per core). Its peak performance can reach 557 teraflops.

Titan has 18,688 nodes connected through a Gemini inter-
nal interconnect, and each node has a single 16-core AMD
6200 series Opteron processor. The total system memory is
600 terabytes and the system peak performance can reach
20 petaflops.

5.2 Evaluation and Discussions

5.2.1 Evaluation of Adaptations at the Application
Layer

For this experiment we used the memory intensive 3-D
AMR Polytropic Gas application with a domain size of 128×
64 × 64 at base level. The experiments were performed on
4K cores of the Intrepid IBM BGP system, which has only
500MB of memory per core. Furthermore, we experimented
with two different types downsampling approaches that can
be used by the application layer adaptation mechanism.

User-defined range-based data downsampling: In
this experiments the application layer adaptation mecha-
nism used an in-situ user-defined down-sampling rate range.
The ranges of acceptable down-sampling factors were spec-
ified as user hints, and were {2, 4} for the first half of the
simulation, and {2, 4, 8, 16} for the second half.

In this experiment, the peak memory used on a processor
varied from 20MB to > 300MB. Figure 5 plots the online
memory availability for a single processor over 40 time steps.
The Figure also shows the actual memory usage during the
same period when using adaptive downsampling rates, as
well as the memory requirements when maximum and min-
imum acceptable spatial resolutions were used for the data.
When sufficient memory was available (between time step 0
to 30), the adaptive mechanism correctly selected the min-

0

20

40

60

80

100

120

140

160

180

200

0 5 10 15 20 25 30 35 40

M
em

or
y
S
iz
e
(M

B
)

Time step

Memory Consumption with MIN data spatial resolution
Memory Consumption with MAX data spatial resolution

Memory Consumption with Adaptive data spatial resolution
Real-time Memory Availability

Figure 5: Evaluation of application layer adaption of
the spatial resolution of the data using user-defined
downsampling rates and based on runtime memory
availability. At the 31st time step, the spatial data
resolution is reduced due to limited availability of
memory resources; and at the 40th time step, the
adaptive resolution reaches the minimal value.

imum down-sampling factor, which produced a larger data
volume at a higher spatial resolution. However, starting
with the 31st time step, the available memory could no
longer support the higher spatial resolution. As a result,
the adaptive mechanism increased the downsampling factor
as seen in the figure.

Entropy based data down-sampling: In this exper-
iments, the down-sampling factors used by the application
layer adaptation mechanism were automatically tuned based
on information theory, which provided us with a theoretical
framework to measure the information content of a vari-
able [20]. For each data block of an AMR dataset, we com-
pute the entropy value to quantify the distribution of its
variables. For a discrete random variable χ and probability
mass function p(x), x ∈ χ, the entropy of X can be defined
as

H(X) = −
∑
x∈χ

p(x)logp(x) (11)

where p(x) ∈ [0, 1],
∑
x∈χ p(x) = 1.0, and −logp(x) rep-

resents the information associated with a single occurrence
of x. The higher the value of H(x), the more information
the data block contains. The unit of H(X) is a bit. For
example, at the 60th time step of the Polytropic Gas case,
the entropy values of the data blocks at the finest level are
between 5.14 and 9.85. We can now adaptively downsample
the data blocks based on their entropy values by specifying
a set of certain thresholds. Figure 6 compares the visualiza-
tion results using the full-resolution data and the adaptively
down-sampled data. We can see that the fine structural in-
formation is well preserved for the regions with the higher
entropy values, while the regions with the lower entropy val-
ues can potentially be reduced aggressively without losing
much information or impact our understanding of the data.

These results clearly show that our approach successfully
adapts the down-sampling factor at runtime to meet the con-

(a)

(b)

Figure 6: Evaluation of application layer adaption
of the spatial resolution of the data using entropy
based data down-sampling. (a) shows a simultane-
ous rendering of two isosurfaces of the full-resolution
Polytropic Gas simulation data set. The surfaces are
extracted from the density variable at the 60th time
step, corresponding the isovalues of 1.23 (red) and
4.18 (green), respectively. The right and left images
show close up views of the two regions. (b) shows
the result after the dynamic adaption of its spatial
resolution. The right region has its entropy value
(at 5.14) that is lower than the specified threshold
and thus is down-sampled at every 4th grid point.
The left region has a higher entropy value (at 9.21)
and its resolution is not changed.

straints on data resolution at application layer and on the
size of available memory at the resource layer. The results
also show that such adaptations can potentially allow mem-
ory intensive simulation workflows to run on systems with
limited available memory.

5.2.2 Evaluation of Adaptations at the Middleware
Layer

In this experiment, we used the AMR Advection-Diffusion
simulation, and evaluated both, an adaptive placement and
a static placement of the visualization service within the
application workflow. The experiments were performed on
Titan and evaluated how middleware layer adaptations can
optimize overall time-to-solution at different scales. We ran
the simulation on 2K, 4K, 8K and 16K cores, with a 16:1
ratio of the number of the simulation core to the number
of the in-transit cores. The initial 3D grid domain sizes
were 1024× 1024× 512 for the 2K case, 1024× 1024× 1024
for the 4K case, 2048 × 1024 × 1024 for the 8K case, and
2048× 2048× 1024 for the 16K case.

End-to-end execution time (or time-to-solution) was the

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

InSitu
InTransit

Adapt
InSitu

InTransit
Adapt

InSitu
InTransit

Adapt
InSitu

InTransit
Adapt

En
d-

to
-e

nd
 e

xe
cu

tio
n

tim
e

(S
ec

on
ds

)

End-to-end Simulation Time
End-to-end Overhead

16K AMR cores8K AMR cores4K AMR cores2K AMR cores

Figure 7: Comparison of cumulative end-to-end ex-
ecution time between static placement (in-situ/in-
transit) and adaptive placement. End-to-end over-
head represents the overhead on overall time-to-
solution including data processing time, data trans-
fer time, and other system overheads.

key metric used in our evaluation and indicates how fast the
users can get insights from data. The cumulative end-to-
end execution time consists of two parts as seen in Figure 7:
end-to-end simulation time and end-to-end overhead. End-
to-end overhead represents the time cost caused by data pro-
cessing, data transfers and system overheads such as adap-
tation. Compared with static approaches for placing analy-
sis , our approach shows significant benefits in terms of the
time-to-solution – it achieves the smallest cumulative end-
to-end execution time, which matches our proposed policy
that minimizes the time-to-solution by adaptive placement.
Quantitatively, the cumulative end-to-end execution over-
head in adaptive approach decreases by 50.00%, 50.31%,
50.50%, 56.30% compared with static in-situ placement, and
75.42%, 38.78%, 21.29%, 48.22% as compared with static
in-transit placement, respectively in 2K, 4K, 8K, and 16K
cases. The end-to-end overhead in all the cases are less than
6% percent of the simulation time. Meanwhile, since the
analysis in some time steps are adapted to perform in-situ,
the overall data movement in adaptive placement is reduced
by 50.00%, 48.00%, 47.90%, 39.04% at 2K, 4K, 8K, and 16K
cases, as compared to static in-transit processing placement,
as shown in Figure 8.

5.2.3 Evaluation of Adaptations at the Resource Layer
In this experiment, we performed the local adaptations at

resource layer to dynamically change the number of cores for
in-transit staging. With 4,096 simulation cores, the initial
number of cores available as in-transit staging resources is
256. Other configurations of this experiment are the same
as those in 5.2.1. This experiment is designed to evaluate
how our cross-layer adaptation respond to dynamic resource
requirements to achieve an efficient CPU utilization.

Figure 9 plots results adaptation which is the number of
in-transit cores for each time step. At the beginning of
the simulation, the size of data generated and processed

 0

 200

 400

 600

 800

 1000

 1200

 1400

2K 4K 8K 16K

Si
ze

 o
f a

gg
re

ga
te

d
in

si
tu

-in
tra

ns
it

da
ta

 tr
an

sf
er

s
(G

B)

AMR simulation cores

Intransit placement
Adaptive placement

Figure 8: Comparison of total data movement
with/without performing middleware adaptation.

in-transit is relatively small. Therefore, only around 50 in-
transit cores are needed. When the grid gets refined and
more data are generated, more processors are allocated on
staging area to meet the constraint of minimized time-to-
solution as well as the memory resource requirement for in-
transit analysis.

The adaptation approach uses fewer in-transit processor
cores to achieve the same time-to-solution, compared with
using a static number of in-transit cores. As a result, the
resource utilization of the in-transit staging area is greatly
improved. To quantify the improvement of CPU utilization,
we define the cpu utilization efficiency as

∑TS
j=1

∑Mj

i=1{Tintransit analysis i j}∑TS
j=1

∑Mj

i=1{Tintransit total i j}
(12)

where TS:is the maximum time step, Mj : number of in-
transit cores allocated at the jth time step, Tintransit analysis i j :
execution time of the ith in-transit processor on data anal-
ysis at the jth time step, Tintransit total i j : total execution
time of the ith in-transit processor at the jth time step.

We find that the utilization efficiency in adaptive alloca-
tion case is 87.11%, much better than 54.57% in the case of
static allocation.

5.2.4 Evaluation of Time-to-Solution Aware Cross-
layer Adaptations

One local layer adaptation cannot meet scientists’ require-
ments in some scenarios. For example, the scientists attempt
to find the abnormities of an AMR-based simulation through
visualizing the output data on the fly under a limited num-
ber of computing cores. In this case, visualizing data with
lower spatial resolution is sufficient and more efficient for
abnormities checking. Moreover, the visualization analy-
sis should be adaptively performed in-situ or/and in-transit
quickly and efficiently under the constraint of limited com-
puting resources as well. We can clearly see that although
application layer adaptation could adjust the data resolu-
tion adaptively, the middleware adaptation is also needed
to help quickly find the abnormities. Therefore, a combined

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30 35 40

N
um

be
ro

fi
n-

tra
ns

it
co

re
s

Time step

Static
Adaptive

Figure 9: Number of in-transit processors when per-
forming resource layer adaptation.

approach that can employ the adaptations on multiple layers
in a coordinated manner is required.

To evaluate such global combined cross-layer adaptation
on multiple layers, we ran this experiment with the objective
of minimized time-to-solution. For the comparison purpose,
the basic experiment workflow and settings are the same
as those in experiment 5.2.2. Besides, the same acceptable
user-defined data sampling rates in experiment 5.2.1 are also
provided as inputs for possible application layer adaptation.

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

Local
Global

Local
Global

Local
Global

Local
Global

En
d-

to
-e

nd
 e

xe
cu

tio
n

tim
e

(S
ec

on
ds

)

End-to-end Simulation Time
End-to-end Overhead

16K AMR cores8K AMR cores4K AMR cores2K AMR cores

Figure 10: Comparison of cumulative end-to-end ex-
ecution time between with global adaptation and
with only local middleware adaptation.

The experiment result shows that all the adaptations at
these three layers are employed, which matches the theoret-
ical expectation of the global adaptation mechanism. Also,
these adaptations interacted with each other. Figure 10
shows the values of overall cumulative end-to-end overhead,
which decrease by 52.16%, 84.22%, 97.84%, 88.87% respec-
tively in 2K, 4K, 8K, and 16K cases, when compared with

Cases Total Time Steps No. of Time Steps under Actual Utilization of In-Transit Cores

No. of Sim Cores : No. of Staging Cores 100% Cores 75% Cores 50% Cores Less than 50% Cores
2K:128 27 25 2 - -
4K:256 42 8 13 4 17
8K:512 49 4 23 22 -

16K:1024 41 10 12 10 9

Table 2: Actually in-transit cores utilization while performing in-transit analysis.

 0

 200

 400

 600

 800

 1000

 1200

 1400

2K 4K 8K 16K

Si
ze

 o
f a

gg
re

ga
te

d
in

si
tu

-in
tra

ns
it

da
ta

 tr
an

sf
er

s
(G

B)

AMR simulation cores

Local adaptation
Global adaptation

Figure 11: Comparison of total data movement be-
tween with global adaptation and with local middle-
ware adaptation.

the results of local middleware adaptation in experiment 5.2.2.
Since the raw data is adapted to be reduced in-situ, the time
of both in-situ analysis and in-transit analysis decreases with
the decreasing data volume. On the other hand, faster in-
transit analysis means that it is more possible for staging
resources to stay idle when the simulation of new time step
is finished. Due to the policy of middleware adaptation,
the analysis may be adapted to perform in-transit more fre-
quently on such condition, as the results shown in Table 2.

Moreover, although performing more in-transit analysis
means more data transfer, Figure 11 demonstrates that the
data reduction from application layer adaptation still plays
an dominant role – the overall amount of data transfer is de-
creased by 45.93%, 17.25%, 5.76%, and 32.41%, as compared
to the results in experiment 5.2.2. Meanwhile, Table 2 shows
that fewer in-transit cores are used to achieve the same time-
to-solution, which demonstrates another benefit of this com-
bined cross-layer adaptation. In 4K and 16K cases, even
only less than 50% of preallocated in-transit cores are adap-
tively used in some of the time steps.

In summary, our cross-layer adaptation approach can be
triggered and dynamically respond at runtime to meet the
user-defined objectives under the varying resource limitation
and user’s constraints. Compared with the static approaches
in other research, both the local adaptation and global com-
bined cross-layer adaptation show benefits in terms of time-
to-solution, data movement, and resource utilization effi-
ciency. The experiment results based on Chombo-based ap-
plications and adjustable visualization code showed that our
approach could be extensible to other scalable analysis ap-

proaches with no/rare communications, such as descriptive
statistic analysis, data subsetting, etc.

6. RELATED WORK
Simulation-time Data Processing: The increasing per-

formance gap between computation and I/O in high-end
computing environment renders traditional post-processing
data analysis approach based on disk I/O infeasible. As
a result, simulation-time data processing approaches have
emerged, which operate on in-memory data before it is writ-
ten to file systems. Several research projects have focused
on two specific simulation-time analysis techniques, namely
in-situ processing and in-transit processing.

In-situ data processing allows direct access to in-memory
simulation data, and has been used in visualization [14], [22], [7],
indexing building [10], data compression [11], multi-physics
coupling [25], etc. This technique greatly reduces the cost of
data movement across network because most data is locally
available in the memory. However, due to the resource shar-
ing nature of in-situ processing, it can increase the overall
time-to-solution.

In-transit data processing executes data operations on
dedicated compute resources in parallel and thus minimizes
the impact on main simulation and overall time-to-solution.
Many projects have studied dedicated ”staging” resources to
support potential in-transit operations, such as DataStager [2],
PreDatA [26], DataSpaces [5, 6]/ActiveSpaces [4], XpressS-
pace [24], GLEAN [19] and Nessie [15]. Our previous work
also integrates messaging system on the staging area to sup-
port flexible data publish and subscribe [9]. However, the
data movement crossing network in this approach introduces
large overheads as well as power consumption.

To take advantage of both in-situ and in-transit analytic
placements, many recent researches [3] have explored the
benefits of combining both in-situ and in-transit approaches
on leadership class supercomputers, and demonstrated the
importance of where the analytics execute in a hybrid in-
situ/in-transit system. FlexIO [27] exploited the trade-offs
in performing analytics at different levels of the I/O hier-
archy and supported a variety of simulation-analytics work-
loads through flexible placement options. However, these
research only target static application workflows and pre-
schedule the analysis placement. The adaptive analysis place-
ment in our cross-layer adaptation framework can respond
to the dynamic data management requirements of complex
simulation-analysis workflows, by scheduling the placement
of analysis dynamically at runtime.

Single-Layer and Cross-Layer Adaptation: Previ-
ous research efforts have focused on improving the perfor-
mance by using a single-layer adaptive approach. Tapus et
al. [18] introduced Resource Specification Language (RSL), a
prototype language that performs the adaptation by select-
ing appropriate program libraries and adaptively adjusting
the application parameters to tune the overall performance.

This approach only performs adaptation at the application
layer and has no effect on other layers. In addition, Hsu et
al. [8] proposed an algorithm that specifically targets at the
hardware layer, which automatically adapts CPU settings
such as voltage and frequency to reduce power consumption
in HPC environment.

Meanwhile, many researchers have noticed that cross-layer
adaptation could achieve performance improvement, espe-
cially when dealing with more complex workflows. For ex-
ample, some cross-layer adaptation methods show encour-
aging results on energy saving in mobile device. Sachs et
al. [17] employs a hierarchical approach that performs ex-
haustive global adaptation in conjunction with local adap-
tations. Although, at a smaller scale, they were able to
achieve greater energy efficiency at four system layers: hard-
ware layer, network layer, operating system layer, and ap-
plication layer. Similarly, the GRACE-1 [23] framework was
designed and implemented for mobile multimedia systems.
It supports application QoS under CPU and energy con-
straints via coordinated adaptation in the hardware, OS,
and application layers. Moreover, the idea of cross-layer has
been employed in gird computing environment to deal with
the problem of dynamic resource management [12].

However, the cross-layer adaptation approach has not been
explored for dynamic simulation-analysis workflows. Our
work proposes the cross-layer adaptation approach to enable
dynamic adaptation in simulation-time data management
and processing, and our large-scale experiments demonstrate
the effectiveness in increasing resource efficiency and reduc-
ing overall time-to-solution on HPC system.

7. CONCLUSION AND FUTURE WORK
In this paper, we make a case for using an adaptive cross-

layer approach to help coordinate data intensive simulation
on large-scale systems. We focus on making run-time adap-
tation decisions across three different layers: application
layer, middleware layer, and resource layer. We argue that
adaptation is not only necessary but also vital to meet sys-
tem and application’s constrains. Moreover, in order to fully
adapt and reap potential benefit, adaptation decisions need
to be made collectively using information from all three lay-
ers as well as user’s inputs.

We describe the design and system model of our cross-
layer approach, which consists of three major components:
a monitor, the adaptation engine, and adaptation policies.
We also discuss how to realize the cross-layer adaptations
and formulate the adaptation policies at each layer with cor-
responding triggers. Our experimental evaluation uses the
AMR-based simulation codes implemented with Chombo
framework and runs on both IBM BlueGene/P systems and
Cray-XK7 systems. The evaluation results show the ef-
fectiveness of adaptation at each layer. Moreover, com-
pared to the static approach, the results also show that our
cross-layer approach with coordinated adaptations has bet-
ter performance, in terms of reducing network data move-
ment, improving resource utilization and minimizing time-
to-solution.

Our future work includes (1) designing and formalizing
corresponding programming model for such cross-layer ap-
proach to release users’ programming complexity; (2) utiliz-
ing such approach on power management in dynamic simu-
lations.

8. ACKNOWLEDGMENTS
The research presented in this work is supported in part

by National Science Foundation (NSF) via grants numbers
DMS 1228203 and IIP 0758566, by the DoE ExaCT Com-
bustion Co-Design Center via subcontract number 4000110839
from UT Battelle, by the DoE Scalable Data Management,
Analysis, and Visualization (SDAV) Institute via the grant
numbers DE-SC0007455, by the NSF Center for Remote
Data Analysis and Visualization (RDAV) via subcontract
number A10-0064-S005, by the DoE Partnership for Edge
Physics Simulations (EPSI) via grant number DE-SC0008455,
and via grant number DE-FG02-06ER54857, and by an IBM
Faculty Award. The research and was conducted as part of
the NSF Cloud and Autonomic Computing (CAC) Center
at Rutgers University and the Rutgers Discovery Informat-
ics Institute (RDI2).

9. REFERENCES
[1] Chombo website,

”http://seesar.lbl.gov/anag/chombo”.

[2] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky,
K. Schwan, and F. Zheng. Datastager: scalable data
staging services for petascale applications. In Proc.
18th International Symposium on High Performance
Distributed Computing (HPDC’09), 2009.

[3] J. C. Bennett, H. Abbasi, P.-T. Bremer, R. W. Grout,
A. Gyulassy, T. Jin, S. Klasky, H. Kolla, M. Parashar,
V. Pascucci, P. PŐbay, D. Thompson, H. Yu,
F. Zhang, and J. Chen. Combining in-situ and
in-transit processing to enable extreme-scale scientific
analysis. In Proceedings of IEEE/ACM
Supercomputing Conference (SC), November 2012.

[4] C. Docan, M. Parashar, J. Cummings, and S. Klasky.
Moving the Code to the Data - Dynamic Code
Deployment Using ActiveSpaces. In Proc. 25th IEEE
International Parallel and Distributed Processing
Symposium (IPDPS’11), May 2011.

[5] C. Docan, M. Parashar, and S. Klasky. DataSpaces:
An Interaction and Coordination Framework for
Coupled Simulation Workflows. In Proc. of 19th
International Symposium on High Performance and
Distributed Computing (HPDC’10), June 2010.

[6] C. Docan, M. Parashar, and S. Klasky. Dataspaces: an
interaction and coordination framework for coupled
simulation workflows. Cluster Computing,
15(2):163–181, 2012.

[7] N. Fabian, K. Moreland, D. Thompson, A. Bauer,
P. Marion, B. Gevecik, M. Rasquin, and K. Jansen.
The paraview coprocessing library: A scalable, general
purpose in situ visualization library. In IEEE
Symposium on Large Data Analysis and Visualization
(LDAV), October 2011.

[8] C.-H. Hsu and W. chun Feng. A power-aware run-time
system for high-performance computing. In
Supercomputing, 2005. Proceedings of the ACM/IEEE
SC 2005 Conference, page 1, nov. 2005.

[9] T. Jin, F. Zhang, M. Parashar, S. Klasky,
N. Podhorszki, and H. Abbasi. A scalable messaging
system for accelerating discovery from large scale
scientific simulations. In Proc. IEEE International
Parallel and Distributed Processing Symposium
(HiPC), December 2012.

[10] J. Kim, H. Abbasi, L. Chacon, C. Docan, S. Klasky,
Q. Liu, N. Podhorszki, A. Shoshani, and K. Wu.
Parallel in situ indexing for data-intensive computing.
In Large Data Analysis and Visualization (LDAV),
2011 IEEE Symposium on, pages 65 –72, oct. 2011.

[11] S. Lakshminarasimhan, J. Jenkins, I. Arkatkar,
Z. Gong, H. Kolla, S.-H. Ku, S. Ethier, J. Chen,
C. Chang, S. Klasky, R. Latham, R. Ross, and
N. Samatova. Isabela-qa: Query-driven analytics with
isabela-compressed extreme-scale scientific data. In
High Performance Computing, Networking, Storage
and Analysis (SC), 2011 International Conference for,
pages 1 –11, nov. 2011.

[12] C. Li and L. Li. Three-layer control policy for grid
resource management. J. Netw. Comput. Appl.,
32(3):525–537, May 2009.

[13] W. E. Lorensen and H. E. Cline. Marching cubes: A
high resolution 3d surface construction algorithm.
SIGGRAPH Comput. Graph., 21(4):163–169, Aug.
1987.

[14] K.-L. Ma. In Situ Visualization at Extreme Scale:
Challenges and Opportunities. IEEE Computer
Graphics and Applications, 29(6):14–19, 2009.

[15] R. Oldfield, P. Widener, A. Maccabe, L. Ward, and
T. Kordenbrock. Efficient data-movement for
lightweight i/o. In Cluster Computing, 2006 IEEE
International Conference on, pages 1 –9, sept. 2006.

[16] M. Parashar. Addressing the petascale data challenge
using in-situ analytics. In Proceedings of the 2nd
international workshop on Petascal data analytics:
challenges and opportunities, PDAC ’11, pages 35–36,
New York, NY, USA, 2011. ACM.

[17] D. Sachs, S. Adve, and D. Jones. Cross-layer adaptive
video coding to reduce energy on general-purpose
processors. In Image Processing, 2003. ICIP 2003.
Proceedings. 2003 International Conference on,
volume 3, pages III–109. IEEE, 2003.

[18] C. Tapus, I.-H. Chung, and J. Hollingsworth. Active
harmony: Towards automated performance tuning. In
Supercomputing, ACM/IEEE 2002 Conference,
page 44, nov. 2002.

[19] V. Vishwanath, M. Hereld, and M. Papka. Toward
simulation-time data analysis and i/o acceleration on
leadership-class systems. In Large Data Analysis and
Visualization (LDAV), 2011 IEEE Symposium on,
pages 9 –14, oct. 2011.

[20] C. Wang and H.-W. Shen. Information theory in
scientific visualization. Entropy, 13:254–273, 2011.

[21] G. H. Weber, V. E. Beckner, H. Childs, T. J. Ligocki,
M. Miller, B. van Straalen, and E. W. Bethel.
Visualization of scalar adaptive mesh refinement data.
Numerical Modeling of Space Plasma Flows:
Astronum-2007 (Astronomical Society of the Pacific
Conference Series), 385:309–320, 2008.

[22] H. Yu, C. Wang, R. Grout, J. Chen, and K.-L. Ma. In
Situ Visualization for Large-Scale Combustion
Simulations. IEEE Computer Graphics and
Applications, 30(3):45–57, 2010.

[23] W. Yuan, K. Nahrstedt, S. V. Adve, D. L. Jones, and
R. H. Kravets. Grace-1: Cross-layer adaptation for
multimedia quality and battery energy. IEEE
Transactions on Mobile Computing, 5(7):799–815, July

2006.

[24] F. Zhang, C. Docan, H. Bui, M. Parashar, and
S. Klasky. Xpressspace: a programming framework for
coupling partitioned global address space simulation
codes. Concurrency and Computation: Practice and
Experience, 2013.

[25] F. Zhang, C. Docan, M. Parashar, S. Klasky,
N. Podhorszki, and H. Abbasi. Enabling in-situ
execution of coupled scientific workflow on multi-core
platform. In Proc. 26th IEEE International Parallel
and Distributed Processing Symposium (IPDPS’12),
2012.

[26] F. Zheng, H. Abbasi, C. Docan, J. Lofstead,
S. Klasky, Q. Liu, M. Parashar, N. Podhorszki,
K. Schwan, and M. Wolf. PreDatA - preparatory data
analytics on peta-scale machines. In Proc. of 24th
IEEE International Parallel and Distributed
Processing Symposium (IPDPS’10), April 2010.

[27] F. Zheng, H. Zou, G. Eisnhauer, K. Schwan, M. Wolf,
J. Dayal, T. A. Nguyen, J. Cao, H. Abbasi, S. Klasky,
N. Podhorszki, and H. Yu. Flexio: I/o middleware for
location-flexible scientific data analytics. 2013.

